Motor Delays: Early Identification and Evaluation

abstract

Pediatricians often encounter children with delays of motor development in their clinical practices. Earlier identification of motor delays allows for timely referral for developmental interventions as well as diagnostic evaluations and treatment planning. A multidisciplinary expert panel developed an algorithm for the surveillance and screening of children for motor delays within the medical home, offering guidance for the initial workup and referral of the child with possible delays in motor development. Highlights of this clinical report include suggestions for formal developmental screening at the 9-, 18-, 30-, and 48-month well-child visits; approaches to the neurologic examination, with emphasis on the assessment of muscle tone; and initial diagnostic approaches for medical home providers. Use of diagnostic tests to evaluate children with motor delays are described, including brain MRI for children with high muscle tone, and measuring serum creatine kinase concentration of those with decreased muscle tone. The importance of pursuing diagnostic tests while concurrently referring patients to early intervention programs is emphasized. Pediatrics 2013;131:e2016–e2027

INTRODUCTION

The American Academy of Pediatrics (AAP) recommends developmental surveillance at all preventive care visits and standardized developmental screening of all children at ages 9, 18, and 30 months.1 Recently, developmental screening instruments and their clinical interpretations have emphasized the early detection of delays in language and social development, responsive to rising prevalence rates of autism spectrum disorders in US children.2 The most commonly used developmental screening instruments have not been validated on children with motor delays.3,4 Recognizing the equal importance of surveillance and screening for motor development in the medical home, this clinical report reviews the motor evaluation of children and offers guidelines to the pediatrician regarding an approach to children who demonstrate motor delays and variations in muscle tone. (This report is aimed at all pediatric primary care providers, including pediatricians, family physicians, nurse practitioners, and physician assistants. Generic terms, such as clinician and provider, are intended to encompass all pediatric primary care providers.)

RATIONALE

Gross motor development follows a predictable sequence, reflecting the functional head-to-toe maturation of the central nervous system.
Step 7. Are the History or Examination Results Concerning?

After identifying concerns of motor development, primary care clinicians can perform key diagnostic tests. All testing should be performed in the context of the child’s past medical history, including prenatal complications and exposures, perinatal problems, feeding, and growth. Family history is also important to identify any other relatives with developmental or motor issues, recurrent pregnancy loss, stillbirth, or infant death, which may lead to identification of an underlying genetic etiology. Findings on physical examination, such as unusual facial features or other known visceral anomalies, may suggest a specific genetic condition. The state-mandated newborn screening laboratory results should be reviewed, because normal results exclude many disorders and avoid unnecessary testing. Although newborn screening is comprehensive, it does not test for all inborn biochemical disorders.

The algorithm (Fig 1) can be used to help guide appropriate initial testing. Table 3 lists “red flags” that should prompt the primary care pediatrician to expedite referral to diagnostic resources.

Step 8. High, Normal, or Low Tone?

Step 9a. Consider Neuroimaging

Increased tone in a child with neuromotor delay suggests an upper motor neuron problem, such as cerebral palsy. The American Academy of Neurology recommends imaging of the brain, preferably by MRI, for patients suspected of having cerebral palsy. This test can be ordered within the medical home at the same time the patient is referred for specialist consultation for diagnosis.

Step 9b. Measure Creatine Phosphokinase and Thyroid-Stimulating Hormone Concentrations

When low to normal tone is identified, especially with concomitant weakness, investigations should target diseases of the lower motor neurons or muscles. Among the most common is Duchenne muscular dystrophy (DMD), characterized by weakness, calf hypertrophy, and sometimes cognitive or social delays. DMD usually presents at 2 to 4 years of age, but signs of weakness may be evident earlier.

Becker muscular dystrophy is allelic to DMD but typically presents in older children and with a milder phenotype. Initial testing for all children with motor delay and low tone can be performed within the medical home by measuring the serum creatine phosphokinase (CK) concentration. The CK concentration is significantly elevated in DMD, usually >1000 U/L. As an X-linked disorder, there may be a family history of other affected male family members on the maternal side. However, DMD often presents in the absence of a family history for this disorder, with approximately one-third of cases being new mutations. If the CK concentration is elevated, the diagnosis of DMD can usually be confirmed with molecular sequencing of the DMD gene. Other neuromuscular disorders include diseases of the peripheral motor nerves or muscles, such as myotonic dystrophy, spinal muscular atrophy, mitochondrial disorders, and congenital myasthenia gravis. Testing for these diseases should be performed by subspecialists, because these patients often require electrodiagnostic or specific genetic testing.

Although congenital hypothyroidism will be identified by newborn screening, acquired hypothyroidism and hyperthyroidism can present in later infancy or childhood with motor delay.
and low to normal tone. It is reasonable to perform thyroid function studies (thyroxine [T4] and thyroid-stimulating hormone) as part of the general laboratory evaluation for children with low tone or neuromuscular weakness, even without classic signs of thyroid disease.

Cerebral palsy classically presents with spasticity, dystonia, or athetosis, but may also result in hypotonia. Children with cerebral palsy may have a history of perinatal insult with concomitant abnormalities on brain imaging. Other causes of hypotonia should be considered before the diagnosis of hypotonic cerebral palsy is given to a child with an uneventful perinatal history and normal brain imaging.

DCD may be present when a child’s motor coordination performance is significantly below norms for age and intellect, unrelated to a definable medical condition that affects neuromotor function (such as cerebral palsy, ataxia, or myopathy). It can affect gait, handwriting, sports and academic participation, and self-help skills. More than half of individuals with DCD remain symptomatic through adolescence and young adulthood. Intervention, especially task-oriented approaches, can improve motor ability.9

Children with neuromotor abnormalities, who also have failure to thrive, growth abnormalities, dysmorphic facial features, or other visceral anomalies, may have a chromosome abnormality, either common or rare. The American College of Medical Genetics and Genomics recommends microarray testing as the first-line chromosome study.24 Because of the difficulty often encountered in interpretation of results, this test is typically ordered by a subspecialist familiar with this testing. Routine chromosome testing may be appropriate for children with weakness suspected as having recognizable disorders, such as Down syndrome (including mosaic Down syndrome), Turner syndrome, and Klinefelter syndrome. Fragile X syndrome is the most common inherited cause of cognitive impairment, and children with fragile X syndrome may have some element of motor delay. Genetic testing for fragile X syndrome should be considered in both boys and girls, whether they have dysmorphic facial features or a family history.

Common genetic conditions may present with early motor delays (Table 4). The 22q11.2 deletion syndrome (velocardiofacial syndrome) may present with hypotonia and feeding disorder in infancy and delayed motor milestones.25 Noonan syndrome is also a common disorder, and although it is classically associated with short stature, webbed neck, ptosis, and pulmonary stenosis, the phenotype is highly variable, and developmental delays, especially motor delays, are common. Noonan syndrome is genetically heterogeneous and may be caused by mutations in genes in the ras pathway.26 Neurofibromatosis type 1, associated with mutations in the NF1 gene, can lead to developmental delays and hypotonia in infancy and early childhood. This condition should be suspected in children with hypotonia and multiple (greater than 6) café au lait spots.27 Children with known or suspected genetic disorders may benefit from genetic counseling and genetic testing for the family.

<table>
<thead>
<tr>
<th>TABLE 3 “Red Flags” in the Evaluation of a Child With Neuromotor Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Flags: Indications for Prompt Referral</td>
</tr>
<tr>
<td>Elevated CK to greater than 5x normal values (boys and girls)</td>
</tr>
<tr>
<td>Fasciculations (most often but not exclusively seen in the tongue)</td>
</tr>
<tr>
<td>Facial dysmorphism, organomegaly, signs of heart failure, and early joint contractures</td>
</tr>
<tr>
<td>Abnormalities on brain MRI</td>
</tr>
<tr>
<td>Respiratory insufficiency with generalized weakness</td>
</tr>
<tr>
<td>Loss of motor milestones</td>
</tr>
<tr>
<td>Motor delays present during minor acute illness</td>
</tr>
</tbody>
</table>

Step 10. Refer to Early Intervention/Child Find, and Consult/Refer to Appropriate Pediatric Subspecialists, and Perform Remainder of Bright Futures Health Supervision Examination

Observation

Mild abnormalities that are not accompanied by “red flag” findings (red flag conditions necessitate prompt referral) may be closely followed through “observation,” but a plan for new or worsening symptoms as well as a time-definite follow-up plan must be developed. Families should understand that clinical changes should prompt urgent reevaluation. This includes regression of motor skills, loss of strength, or any concerns with respiration or swallowing. This ensures that the progressive disorders are brought to medical attention immediately.
TABLE 4 Common Genetic Disorders for Which Neuromotor Delays May Be a Presenting Feature

<table>
<thead>
<tr>
<th>Condition</th>
<th>Inheritance</th>
<th>Clinical Testing</th>
<th>Clinical Caveats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angelman syndrome</td>
<td>Sporadic</td>
<td>Methylation testing for Prader-Willi/Angelman syndrome critical region, gene sequencing of UBE3A gene</td>
<td>Infantile hypotonia and delayed motor milestones, usually present with global delays; dysmorphic features are subtle in infancy.</td>
</tr>
<tr>
<td>Chromosome disorders</td>
<td>Many sporadic; high recurrence risk for unbalanced translocations if 1 parent has a balanced translocation</td>
<td>Chromosome analysis, single nucleotide polymorphism microarray</td>
<td>Some patients will have multiple anomalies and will have global developmental delays. Some may present in infancy or early childhood with delayed motor and/or speech milestones. Chromosome mosaicism also seen.</td>
</tr>
<tr>
<td>Down syndrome</td>
<td>Autosomal dominant (most cases new mutations)</td>
<td>Fluorescence in situ hybridization (FISH) for deletion 22q11.2</td>
<td>90% of cases new mutations. Feeding and speech disorders and cognitive impairment also seen. >50% will have a congenital heart defect.</td>
</tr>
<tr>
<td>Klinefelter syndrome</td>
<td>Rare deletions and duplications</td>
<td>X-linked recessive</td>
<td>Becker and Duchenne muscular dystrophies are caused by mutations in different regions of the dystrophin gene. Becker muscular dystrophy has a later onset of symptoms with a less severe course; 67% of cases are inherited, 33% are new mutations.</td>
</tr>
<tr>
<td>Deletion 22q11 syndrome (velocardiofacial syndrome)</td>
<td>Autosomal dominant</td>
<td>Gene sequencing and methylation analysis of FMR1 gene</td>
<td>Usually have global delays and cognitive impairment but may present in infancy or early childhood with predominantly motor delays. Males affected primarily, but females with FMR1 expansions may also be affected.</td>
</tr>
<tr>
<td>Fragile X syndrome</td>
<td>Autosomal recessive; X-linked recessive mitochondrial inheritance</td>
<td>Gene sequencing and methylation analysis of FMR1 gene</td>
<td>Constitutional and mitochondrial genetic testing, lactate/pyruvate levels and ratio, serum amino acids</td>
</tr>
<tr>
<td>Myotonic muscular dystrophy</td>
<td>Autosomal recessive</td>
<td>Gene sequencing of DMPK gene</td>
<td>May see anticipation with progression of phenotype in subsequent generations.</td>
</tr>
<tr>
<td>Neurofibromatosis type 1 (NF1)</td>
<td>Autosomal dominant</td>
<td>Usually a clinical diagnosis, gene sequencing NF1 gene</td>
<td>50% new mutations. Hypotonia most evident in infancy and early childhood. Suspect NF1 if hypotonia seen with multiple café au lait spots.</td>
</tr>
<tr>
<td>Noonan syndrome</td>
<td>Autosomal dominant</td>
<td>Gene sequencing for PTPN11 gene, genetically heterogeneous and multiple gene sequencing panels are available</td>
<td>Genetic heterogeneity. Commonly associated with short stature, ptosis, learning and developmental delays, hypotonia, pulmonary stenosis, cryptorchidism, cardiomyopathy.</td>
</tr>
<tr>
<td>Prader-Willi syndrome</td>
<td>Autosomal recessive</td>
<td>DNA methylation testing for Prader-Willi/Angelman syndrome critical region</td>
<td>Hypogonadism, especially in boys. Hypotonia most evident in infancy and may be profound.</td>
</tr>
<tr>
<td>Spinal muscular atrophy, including congenital axonal neuropathy, Werdnig-Hoffmann disease, Kugelberg-Welander disease</td>
<td>Autosomal recessive</td>
<td>Gene deletion or truncation studies for SMN1 gene (85% to 90% of cases)</td>
<td>Usually presents in early infancy with severe hypotonia. Milder forms identified at later ages.</td>
</tr>
</tbody>
</table>

Depending on the nature of the suspected condition and the age of the child, it may be appropriate to have the child return to his or her medical home for a follow-up visit before the next Bright Futures health supervision visit. This will afford the opportunity for an interval review of noted symptoms, new concerns, and changes in physical examination or other developmental findings. Education with the family should not be overlooked or delayed, as a suspected condition can cause significant anxiety. Although the discussion may not be as in-depth as a situation in which diagnostic studies or referral is involved, families deserve a cogent and appropriate discussion of the findings that are being evaluated and what developmental trajectory is expected.
This may help assuage fears and increase compliance with follow-up plans.

Resources

All children with suspected neuromotor delay should be referred to early intervention or special education resources. Additionally, concurrent referrals should be made to physical and/or occupational therapists while diagnostic investigations are proceeding.29 Even when a specific neuromotor diagnosis has not been identified, children with motor delays benefit from educationally and medically based therapies. Each medical home must develop its own local resources and network of subspecialists for assistance with the diagnosis and management of young children with suspected motor delay. Depending on the setting, such subspecialists may include neurologists, developmental pediatricians, geneticists, physiatrists, or orthopedists. In some areas, availability of these resources may be limited, and waiting times may be long.30 Direct physician-to-physician communication is recommended when red flags are identified (Table 3). Sharing digital photographs via a secure Internet connection may further expedite evaluations. However, the absence of red flags does not rule out the presence of significant neuromotor disease, and all children with motor delays should be thoroughly and serially evaluated.

Step 11. Is a Developmental Disorder Identified?

If a developmental disorder is identified, the child should be identified as a child with special health care needs, and chronic-condition management should be initiated (see Step 12b).

Step 12a. Ongoing Developmental Monitoring

If a developmental disorder is not identified through medical and developmental evaluation, the child should be scheduled for an early return visit for further surveillance, as mentioned previously. More frequent visits, with particular attention paid to areas of concern, will facilitate prompt referrals for further evaluation when indicated.

Step 12b. Identify as a Child With Special Health Care Needs and Initiate Chronic Condition Management

When a child has delays of motor development, that child is identified as a child with special health care needs even if that child does not have a specific disease etiology. Children with special health care needs are defined by the Department of Health and Human Services, Health Resources and Services Administration, Maternal and Child Health Bureau as "...those who have or are at increased risk for a chronic physical, developmental, behavioral, or emotional condition and who also require health and related services of a type or amount beyond that required by children generally."31

Children with special health care needs benefit from chronic-condition management, coordination of care, and regular monitoring in the context of their medical homes. Primary care practices are encouraged to create and maintain a registry for the children in the practice who have special health care needs. The medical home provides a triad of key primary care services, including preventive care, acute illness management, and chronic-condition management. A program of chronic-condition management provides proactive care for children and youth with special health care needs, including condition-related office visits, written care plans, explicit comanagement with specialists, appropriate patient education, and effective information systems for monitoring and tracking. Management plans should be based on a comprehensive needs assessment conducted with the family. Management plans should include relevant, measurable, and valid outcomes. These plans should be reviewed and updated regularly. The clinician should actively participate in all care-coordination activities for children with identified motor disorders. Evidence-based decisions regarding appropriate therapies and their scope and intensity should be determined in consultation with the child's family, therapists, pediatric medical subspecialists, and educators (including early intervention or school-based programs).

Children with established motor disorders often benefit from referral to community-based family-support services, such as respite care, parent-to-parent programs, and advocacy organizations. Some children may qualify for additional benefits, such as supplemental security income, public insurance, waiver programs, and state programs for children and youth with special health care needs (Title V). Parent organizations, such as Family Voices, and condition-specific associations can provide parents with information and support and can also provide an opportunity for advocacy.

RESOURCES

Internet resources are available (www.childmuscleweakness.org) for clinicians to view both typical and atypical motor findings. The identification of motor delays (or any chronic condition) in a child can trigger significant psychosocial stress for families.32 The effects of repeated medical visits, testing, and modifications to home and school environments can place a significant burden on even well-functioning families.33 Appropriate psychological support should be implemented early. A consumer health librarian or medical librarian can be used by families to provide specific resources tailored to
For conditions with genetic basis or implications for family planning, medical genetics consultation and genetic counseling should be recommended. An international directory of genetics and prenatal diagnosis clinics can be found at http://www.ncbi.nlm.nih.gov/sites/GeneTests/. Additional Web sites, such as www.rarediseases.org, offer information for both physicians and families.
Information on financial assistance programs should also be provided to families of children with established developmental disorders. They may qualify for benefits, such as supplemental security income (http://www.ssa.gov/pgm/ssi.htm), public insurance (http://www.medicaid.gov), and Title V programs for children and youth with special health care needs (http://internet.doc.uic.edu/dscroot/titlev.asp). There also may be local community programs that can provide transportation and other assistance.

<table>
<thead>
<tr>
<th>Services/Step in Algorithm</th>
<th>Notes</th>
<th>CPT Code</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric preventive care visit</td>
<td>All preventive care visits should include developmental surveillance; screening is performed as needed or at periodic intervals</td>
<td>99381–99384 (EPOS)</td>
<td></td>
</tr>
<tr>
<td>Developmental/medical evaluation: Office or Other Outpatient Services Codes; New Patient</td>
<td>If performed by the physician as a new patient outpatient office visit</td>
<td>99201–99205</td>
<td></td>
</tr>
<tr>
<td>Developmental/medical evaluation: Office or Other Outpatient Services Codes; Established Patient</td>
<td>If performed by the physician as an outpatient office visit</td>
<td>99210–99215</td>
<td></td>
</tr>
<tr>
<td>Developmental/medical evaluation/Office or Other Outpatient Consultations Codes</td>
<td>If performed by the physician as an outpatient office visit</td>
<td>99241–99245</td>
<td></td>
</tr>
<tr>
<td>Developmental screening</td>
<td>Does not require any physician work; rather, clinical staff can score results and provide to physician for interpretation as part of E/M</td>
<td>96110</td>
<td></td>
</tr>
<tr>
<td>Developmental testing</td>
<td>Used for extended developmental testing typically provided by the medical provider (often up to 1 h), including the evaluation interpretation and report</td>
<td>96111</td>
<td></td>
</tr>
<tr>
<td>Identify as a child with special health care needs, and initiate chronic condition management</td>
<td>Children with special health care needs are likely to require expanded time and a higher level of medical decision-making found in these "higher-level" outpatient codes; these codes are appropriate for services in the office and for outpatient facility services for established patients; these codes may be reported using time alone as the factor if more than half of the reported time is spent in counseling</td>
<td>99211–99215</td>
<td></td>
</tr>
</tbody>
</table>
| Prolonged services | At any point during the algorithm when outpatient office or consultation codes are used, prolonged physician service codes may be reported in addition when visits require considerably more time than typical for the base code alone; both face-to-face and non–face-to-face codes are available in CPT | 99354
99353, 99353 for each additional 30 min
99358, 99358 for first 30–74 min of non–face-to-face prolonged services
99359, 99359 for each additional 30 min |

E/M, evaluation and management; EPSDT, Early and Periodic Screening, Diagnostic and Treatment program.
DEVELOPMENTAL SCREENING BILLING AND CODING

Separate Current Procedural Terminology (CPT) codes exist for developmental screening (96110: developmental screening) and testing (96111: developmental testing) when completing neuromotor screening and assessment. The relative values for these codes are published in the Medicare Resource-Based Relative Value Scale and reflect physician work, practice expenses, and professional liability expenses. Table 5 outlines the appropriate codes to use when billing for the processes described in the algorithm. Billing processes related to developmental screening and surveillance should be carefully reviewed to ensure that appropriate CPT codes are used to document screening procedures and ensure proper payment. CPT code 96110 does not include any payment for medical provider services. The expectation is that a nonphysician will administer the screening tool(s) to the parent and score the responses. The physician reviews and interprets the screening results; the physician's work is included in the evaluation and management code used for the child's visit. The preventive care (or new, consultative, or return visit) code is used with the modifier 25 appended and 96110 listed for each screening tool administered. The CPT code 96111 includes medical provider work. This code would more appropriately be used when the medical provider observes the child performing a neuromotor task and demonstrating a specific developmental skill, using a standardized developmental tool.

CONCLUSIONS

The initial responsibility for identifying a child with motor delay rests with the medical home. By using the algorithm presented here, the medical home provider can begin the diagnostic process and make referrals as appropriate. Both during and after diagnosis, communication between the medical home and subspecialists is important, and the medical home should remain fully engaged with the child's care as an integral part of chronic-condition management.

ACKNOWLEDGMENT

The development of this clinical report was funded by the American Academy of Pediatrics through the Public Health Program to Enhance the Health and Development of Infants and Children through a cooperative agreement (5U58DD000587) with the Centers for Disease Control and Prevention's National Center on Birth Defects and Developmental Disabilities.

NEUROMOTOR SCREENING EXPERT PANEL

Nancy A. Murphy, MD, Chairperson — Council on Children With Disabilities
Joseph F. Hagan, Jr, MD — Bright Futures Initiative
Paul H. Lipkin, MD — Council on Children With Disabilities
Michelle M. Macias, MD — Section on Developmental and Behavioral Pediatrics
Dipesh Navsaria, MD, MPH, MSUS
Gary H. Noritz, MD — Council on Children With Disabilities
Georgina Peacock, MD, MPH — Centers for Disease Control and Prevention/National Center on Birth Defects
Peter L. Rosenbaum, MD
Howard V. Saal, MD — Committee on Genetics
John F. Sarwark, MD — Section on Orthopedics
Mark E. Swanson, MD, MPH — Centers for Disease Control and Prevention/National Center on Birth Defects
Max Wiznitzer, MD — Section on Neurology
Marshall Yezierski, MD, MPH — Centers for Disease Control and Prevention/National Center on Birth Defects

STAFF

Rachel Daskalov, MHA
Michelle Zajac Esquivel, MPH
Holly Noteboom Griffin
Stephanie Mucha, MPH

PROJECT CONSULTANT

Jane Bemzweig, PhD

REFERENCES

2. Centers for Disease Control and Prevention, Division of News and Electronic Media. CDC estimates 1 in 88 children in United States has been identified as having an autism spectrum disorder [press release]. Available at: www.cdc.gov/media/releases/2012/p0329_autism_disorder.html. Accessed November 14, 2012
5. Harris SR. Parents' and caregivers' perceptions of their children's development. Dev Med Child Neurol. 1994;36(10):918–923

Motor Delays: Early Identification and Evaluation
Garey H. Noritz, Nancy A. Murphy and NEUROMOTOR SCREENING EXPERT PANEL
Pediatrics 2013;131;e2016; originally published online May 27, 2013;
DOI: 10.1542/peds.2013-1056

Updated Information & Services
including high resolution figures, can be found at:
http://pediatrics.aappublications.org/content/131/6/e2016.full.html

References
This article cites 24 articles, 8 of which can be accessed free at:
http://pediatrics.aappublications.org/content/131/6/e2016.full.html#ref-list-1

Post-Publication Peer Reviews (P3Rs)
3 P3Rs have been posted to this article
http://pediatrics.aappublications.org/cgi/eletters/131/6/e2016

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Development/Behavioral Issues
http://pediatrics.aappublications.org/cgi/collection/development/behavioral_issues_sub
Cognition/Language/Learning Disorders
http://pediatrics.aappublications.org/cgi/collection/cognition:language:learning_disorders_sub
Growth/Development Milestones
http://pediatrics.aappublications.org/cgi/collection/growth:development:milestones_sub

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://pediatrics.aappublications.org/site/misc/Permissions.xhtml

Reprints
Information about ordering reprints can be found online:
http://pediatrics.aappublications.org/site/misc/reprints.xhtml